Skip to Content
Exit

Tag Archive: thru-hole mount

  1. Parts of a Printed Circuit Board Assembly

    Leave a Comment

    The “A” in PCBA

    Printed Circuit Board Assemblies (PCBAs) are electronic assemblies responsible for connecting the electrical components of a system or device. Their applications range from everyday staples such as smartphones to complex custom box build assemblies. The difference between a PCB and PCBA is the A – Assembly of components to the board. Thinking about a PCB layer as a floor, the PCBA represents the completed building – all stairways and connections built to create a fully functioning operation.

     

    What Are the Components of a PCBA?

    PCBAs are flat, thin substrates covered in conductive metal and circuit components. Copper lines, called traces, allow electricity to flow into different board components. In turn, the solder mask insulates the copper traces from other metal parts that might accidentally touch them. Some traces remain exposed so manufacturers can solder components to them.

    The following is a closer look at a few of these PCBA components:

     

    ResistorsResistors regulate the electric current passing through them and indicate their resistance level through color-coding. Resistors are essential because they can guard fragile components against voltage spikes within the circuit. Additionally, if an element needs a lower voltage than the rest of the circuit, a resistor can drop the voltage to the required level.

     

    TransistorsTransistors are semiconductor devices that can control or amplify currents. Small currents applied to one of the transistor’s three terminals control these functions.

     

    CapacitorsCapacitors can store electricity and release it when a different component in the circuit needs more power. If there is any fluctuation in the circuit’s exact voltage, capacitors can store excess charge and release it as required.

     

    InductorsInductors store energy in the form of a magnetic field. Since they have power separate from the circuit’s current, they provide current to the circuit even when the switch is off.

     

    TransformersTransformers transfer current from one circuit to another using wire coils. Running electricity through the wire coils from one circuit produces a magnetic field that reaches the other circuit’s wire coils. The magnetic field creates a current in the new circuit’s wire coils. We can control the amount of current generated by changing the number of turns of the coils in each circuit.

     

    DiodesDiodes / LEDs are elements that only transmit current in one direction and block current in the other direction. In most cases, diodes usually have coloring to note the end that allows flow and the one that does not. They protect fragile electronic components from receiving current from the wrong direction. LEDs, or light-emitting diodes, are a particular type of diode that emits light.

     

    SensorsSensors can detect a change in the environment around the board and translate that into electrical charge. For example, a light sensor can see when it’s getting dark and send current to another element in the circuit, like an LED.

     

    SwitchesSwitches can only be open or closed. If the switch is open, then it allows the current to flow. The switch blocks the current from flowing through the circuit if it is off. This component enables more control of the operator.

     

    How Do Manufacturers Attach Components to a Circuit Board?

    At present, Electronic Manufacturing Service (EMS) Providers can attach these components to a printed circuit board through various forms of manual and automated assembly. Even more, two of the most popular are surface mounting and through-hole mounting.

     

    • Surface-mount technology (SMT) is the master of all domains in PCB technology. In detail, it refrains from using drilled holes to attach PCBA components; all components are placed directly onto the circuit board. Assembling circuit boards using SMT automation is the simplest and cheapest method, and it allows full utilization of both sides of the PCB.

     

    • Thru-hole mounting is the old reliable mainstay for secure builds. Pre-drilled holes connect components to the board. Since they are soldered in place, the components can withstand more stress. These boards cost more to manufacture and are more difficult to modify than surface-mounted PCBAs, so this method is better suited for mounting connectors and large components that need extra attention. In large part, this assembly method is behind the times, remaining useful for unique builds. 

     

    PGF Technology’s High-Quality Printed Circuit Board Assembly

    If you need expert printed circuit board assembly, PGF Technology can help. We pride ourselves on producing high-quality, cost-effective printed circuit board assemblies. Our experienced manufacturers can walk you through all the different options to find your project’s best components and assembly for your project. Contact us today or request a quote if you’re ready to get started!

    LinkedIn LogoYouTube LogoTwitter LogoFacebook Logo

  2. Design for a Medical PCB Assembly

    Leave a Comment

    Playing the Game

    When it comes to medical devices, no average or sub-par printed circuit board assembly (PCBA) is going to cut it! In this live-action game of Operation, the consequences are real, and the assembly is accountable.

    As a premier manufacturer of printed circuit boards, PGF Technology Group fully understands the importance of proper PCBA design for medical devices and systems. However, some may find the design process challenging since many factors must be considered. These factors include safety requirements, cleanliness standards, industry/application-specific regulations, and more. That’s why our team has put together the following guide, which goes over some of the key considerations to keep in mind when designing medical PCB assemblies.

     

    Design for Medical PCBA InfographicSafety First

    Accuracy and precision are crucial to avoiding the buzzer. Many medical devices are designed to perform vital functions while living in or on the human body for extended periods, such as insulin pumps and pacemakers so that any malfunction can put the patient’s life at risk. That’s why manufacturers must design and build these products and their components carefully to ensure patient safety. PCBA manufacturers should consider the operational and environmental conditions (e.g., fluid exposure, temperature), their effect on the product, and the measures needed to combat those effects.

     

    Cleanliness Is Close to Godliness

    A clean workplace is a safe workplace. This saying is especially pertinent in the medical industry, where cleanliness can significantly affect the health and wellbeing of patients and the performance and lifespan of devices. That’s why PCBA manufacturers will often use materials that form surfaces that are easy to clean and disinfect and incorporate strict cleaning practices into production operations to remove any residues left behind from manufacturing processes. Additionally, according to the cleanliness of product clause in ISO 13485 Medical Devices — Quality Management Systems — Requirements for regulatory purposes, organizations need to document product cleanliness or contamination control requirements.

     

    Read the Rule Book

    To properly play the game, you have to know the rules. In the medical industry, products are subject to numerous regulations outlining how they should be designed, manufactured, used, etc. Knowing, understanding, and following them is essential to the success of a product.

     

    ISO 13485

    Firstly, one of the most critical regulations relevant to medical PCBAs and other electronics is ISO 13485, which establishes the requirements for quality management systems for companies involved in one or more of the lifecycle stages of a medical device or the supply of products. The 2016 update of the standard brought the requirements in line with those already mandated by the FDA.

    Companies can be certified to this standard, meaning their quality management system has been verified to meet its strict requirements. The requirements aim to ensure the production of high-quality medical products that are safe and effective, which is why many countries require medical device companies to attain certification. In addition, ISO 13485 certified companies benefit from higher customer satisfaction, greater customer trust, and better credibility.

     

    IPC Class 3 Standards

    Other specifications to consider are the IPC Class 3 Standards. Companies that meet these specifications value skill, constant improvement, and intense scrutiny. They know that a buzzer in the game signals a life or death scenario, so practices must be monitored and perfected.

     

    PGF Technology Group maintains the ISO 13485 compliance and IPC Class 3 Standards for any project connected to medical devices.

     

    What’s the Use?

    In addition to safety, manufacturers must keep in mind the usability of PCBAs. For example:

    • Is SMT or thru-hole assembly appropriate? Manufacturers should reference the specific design requirements from the client to ensure that they utilize the best method of assembly. This process may include prototypes to review board real estate and functionality.
    • How small is too small? While it can be tempting to go with the smallest PCBA design, a design that is too small can limit the complexity of your device. You need to ensure enough space to incorporate all components for a fully operational and reliable instrument.
    • What is the min/max amount of energy input? Determine the circuit’s energy to run during typical and peak operation.

     

    Making It Easy

    Anyone who has built an IKEA item understands the pain caused by a hard-to-assemble project. Without clear-cut instructions and imagery to demonstrate design, the process can become prolonged. Medical PCBA designers can eliminate this pain by designing with assembly in mind; assemblers should not have trouble reaching and mating cables to connectors, soldering connections or placing other essential components. Additionally, the assembled product should be testable using various methods. Some examples include visual assessment, Solder Paste Inspection (SPI), X-ray scanning, In-Circuit Testing (ICT), and Automated Optical Inspection (AOI).

     

    Medical Device Solutions at PGF Technology

    Want to learn more about the critical design considerations for medical PCB assembly? Ask the experts at PGF Technology Group! As an ISO 13485 certified company specializing in PCBA, we can answer or address any of your questions and concerns. Importantly, you can check out our eBook, Key Considerations for Medical PCB Assembly, to overview the vital considerations to keep in mind when designing and assembling medical PCBAs.

    At PGF Technology, we have the knowledge, experience, and certifications to deliver PCBA solutions that meet the most stringent specifications. Contact us or request a quote today if you want to partner with us for your medical PCBA needs.

    LinkedIn LogoYouTube LogoTwitter LogoFacebook Logo

Have Any Questions?

Click Here Now > X